¿Qué es una buena clase en ingeniería desde el punto de vista de los estudiantes?

Zadkiel Zuluaga Rendón, Javier Alejandro Corredor Aristizábal, Jesús Maria Quintero Quintero, Jhon Jairo Ramírez Echeverry, Fredy Andrés Olarte Dussán

Resumen


La realización de este estudio responde a la necesidad de diseñar ambientes académicos que mejoren la adquisición de los conceptos en ingeniería que resultan a veces abstractos y limitan su comprensión. Utilizando metodologías cualitativas, se explora cuáles son los principales factores que los estudiantes refieren cuando evalúan las clases de ingeniería con el propósito de establecer elementos comunes entre las clases consideradas como destacadas. Para tal fin, las evaluaciones abiertas realizadas a profesores de ingeniería de la Universidad Nacional de Colombia fueron codificadas y analizadas para encontrar los temas subyacentes a categorías previamente identificadas en la literatura psicológica. Adicionalmente, se compararon los conteos de frecuencias en estos factores entre los profesores ubicados en el primer y último grupo de la evaluación cuantitativa. Los resultados mostraron que los estudiantes consideraban, dentro de la categoría de metodología, factores asociados a la evaluación, a la dinámica de clase y a la participación, y a la organización de tiempos y espacios. Finalmente, dentro de la categoría de huella docente, los estudiantes incluyeron la dedicación y el compromiso del docente, el nivel de asertividad, y la motivación y actitud. Todos estos factores diferenciaban el primer del último grupo.

Palabras clave


estrategias pedagógicas; educación en ingeniería; identidad; análisis Cualitativo; metodología de enseñanza; experticia

Texto completo:

PDF

Referencias


Gallant, A. and Mayer, D., Teacher performance assessment in teacher education: An example in Malaysia, Journal of Education for Teaching, 38(3), pp. 295-307, 2012.

Sulaiman, M., Ismail, Z.H., Aziz, A.A. and Zaharim, A., Lesson study: Assessing pre-service teacher's performance of teaching chemistry, in Engineering Education (ICEED), 2011 3rd Int. Cong., 2011, pp. 208- 213.

Wei, W., Using summative and formative assessments to evaluate EFL teachers’ teaching performance, Assessment & Evaluation in Higher Education, 40(4), pp. 611-623, 2015. DOI: 10.1080/02602938.2014.939609

Yan, Y., Zhu, Q. and Yang, M., Research on the value-model assessment of performance review for university teachers, in E-Product E-Service and E-Entertainment (ICEEE), 2010 Int. Conf., 2010, pp. 1-4.

Mejía, J.E., Sánchez, P.H. y Visbal, D.A., Evaluación docente mediante BSC y DEA, Revista Educación en Ingeniería, 1(2), pp. 70-86, 2006.

Leinhardt, G. and Greeno, J.G., The cognitive skill of teaching, Journal of Educational Psychology, 78(2), pp. 75-95, 1986. DOI: 10.1037/0022- 0663.78.2.75

Lewis, T., Validating teacher performativity through lifelong schooluniversity collaboration, Educational Philosophy and Theory, 45(10), pp. 1028-1039, 2013. DOI: 10.1111/j.1469-5812.2012.00859.x

Leinhardt, G., Weidman, C. and Hammond, K.M., Introduction and integration of classroom routines by expert teachers, Curriculum Inquiry, 17(2), pp. 135-176, 1987. DOI: 10.1080/03626784.1987.11075284

Leinhardt, G., Math lessons: A contrast of novice and expert competence, Journal for Research in Mathematics Education, 20(1), pp. 52-75, 1987. DOI: 10.2307/749098

Schraw, G., Dunkle, M.E. and Bendixen, L.D., Cognitive processes in well

Langley, P., Pearce, C., Barley, M. and Emery, M., Bounded rationality in problem solving: Guiding search with domain-independent heuristics, Mind & Society, 13(1), pp. 83-95, 2014. DOI: 10.1007/s11299-014- 0143-y

Hayes, J.R., The complete problem solver. New York: Routledge, 2013.

Simon, H.A., The structure of ill-structured problems, in Models of Discovery, H.A. Simon, Ed. Berlin, Germany: Springer, 1977, pp. 304- 325.

Dean Jr, D. and Kuhn, D., Direct instruction vs. discovery: The long view, Science Education, 91(3), pp. 384-397, 2006. DOI: 10.1002/sce.20194

Klahr, D., To everything there is a season, and a time to every purpose under the heavens: What about direct instruction?, in: Constructivist theory applied to instruction: Success or failure?, Tobias, S. and Duffy, T.M. Eds., New York: Taylor and Francis, pp. 291-310. 2009.

Herrington, J., Reeves, T.C. and Oliver, R., Authentic learning environments, in: Handbook of Research on Educational Communications and Technology, Spector, J.M., Merrill, M.D., Elen, J. and Bishop, M.J. Eds., New York: Springer, 2014, pp. 401-412.

Sternberg, R.J., The triarchic mind: A new theory of human intelligence, New York: Viking Pr, 1988.

Kotovsky, K., Hayes, J.R. and Simon, H.A., Why are some problems hard? Evidence from Tower of Hanoi, Cognitive Psychology, 17(2), pp. 248-294, 1985. DOI: 10.1016/0010-0285(85)90009-X

Klahr, D. and Nigam, M., The equivalence of learning paths in early science instruction effects of direct instruction and discovery learning, Psychological Science, 15(10), pp. 661-667, 2004.

Ge, X. and Land, S.M., Scaffolding students’ problem-solving processes in an ill-structured task using question prompts and peer interactions, Educational Technology Research and Development, 51(1), pp. 21-38, 2003. DOI: 10.1007/BF02504515

Ericsson, K.A., Charness, N., Feltovich, P.J. and Hoffman, R., Eds., The Cambridge handbook of expertise and expert performance. Cambridge: Cambridge University Press, 2006.

Ericsson, K.A., Krampe, R.T. and Tesch-Römer, C., The role of deliberate practice in the acquisition of expert performance, Psychological Review, 100(3), pp. 363-406, 1993. DOI: 10.1037/0033- 295X.100.3.363

Ericsson, K.A. and Smith, J., Toward a general theory of expertise: Prospects and limits, Cambridge: Cambridge University Press, 1991.

Linhares, A. and Brum, P., How can experts see the invisible? Reply to Bilalić and Gobet, Cognitive Science, 33(5), pp. 748-751, 2009. DOI: 10.1111/j.1551-6709.2009.01043.x

Ericsson, K.A., Recent advances in expertise research: A commentary on the contributions to the special issue, Applied Cognitive Psychology, 19(2), pp. 233-241, 2005. DOI: 10.1002/acp.1111

Boaler, J. and Greeno, J.G., Identity, agency and knowing in mathematical worlds, in: Multiple perspectives on mathematics teaching and learning, Boaler, J. Ed., Westport, CT: Ablex, 2009, pp. 171-200.

Vagan, A., Towards a sociocultural perspective on identity formation in education, Mind, Culture, and Activity, 18(1), pp. 43-57, 2011. DOI: 10.1080/10749031003605839

Gresalfi, M., Martin, T., Hand, V. and Greeno, J., Constructing competence: An analysis of student participation in the activity systems of mathematics classrooms, Educational Studies in Mathematics, 70(1), pp. 49-70, 2008. DOI: 10.1007/s10649-008-9141-5

Miles, M.B., Huberman, A.M. and Saldaña, J., Qualitative data analysis: A methods sourcebook. Thousand Oaks, CA: SAGE Publications, 2013.

Namey, E., Guest, G., Thairu, L. and Johnson, L., Data reduction techniques for large qualitative data sets, in: Handbook for teambased qualitative research, Guest, G. and MacQueen, K.M., Eds., Lanham, MD: AltaMira, 2009, pp. 137-161.

Strauss, A.L., Qualitative analysis for social scientists. Cambridge: Cambridge University Press, 1987.

Patton, M.Q., Qualitative evaluation and research methods (2nd Edition). Thousand Oaks, CA: Sage Publications, 2001.

Nathan M.J. and Petrosino, A., Expert blind spot among preservice teachers, American Educational Research Journal, 40(4), pp. 905-928, 2004.

Landau, M.J., Oyserman, D., Keefer, L.A. and Smith, G.C., The college journey and academic engagement: How metaphor use enhances identity-based motivation, Journal of Personality and Social Psychology, 106(5), pp. 679-698, 2014. DOI: 10.1037/a0036414




DOI: http://dx.doi.org/10.26507/rei.v12n23.740




Asociación Colombiana de Facultades de Ingeniería. ACOFI.
Carrera 68 D 25B – 86 Oficina 205
Teléfono: (57 4) 425 50 68 - (57 1) 427 30 65 Extensión 103
Bogotá, Colombia. Suramérica

Email: revista@acofi.edu.co
http://www.educacioneningenieria.org